Symetria osiowa - Co to jest, definicja i pojęcie

Symetria osiowa to sytuacja, w której wszystkie półpłaszczyzny pobrane z pewnej dwusiecznej wykazują te same cechy.

Innymi słowy, asymetria osiowa to taka, która jest pokazana wokół osi. To w przeciwieństwie do symetrii centralnej, która dotyczy punktu.

Oznacza to, że symetria osiowa występuje, gdy wszystkie punkty figury pokrywają się z punktami innej, będąc w równej odległości od osi symetrii. Mamy więc, że punkty A, B i C mają odpowiadające im punkty homologiczne A ', B' i C '.

Dlatego też, jeśli A i A' są homologiczne, oba znajdują się w tej samej odległości od osi symetrii.

Należy również zauważyć, że odległość między punktami figury jest równa odległości między punktami figury, z którą przedstawia symetrię osiową.

Aby wyjaśnić to graficznie, oś symetrii, do której się odnosimy, jest jak lustro, w którym odbija się postać. Możemy też pomyśleć o tym, kiedy składamy kwadratowy arkusz, łącząc punkt z punktem po przeciwnej stronie. W ten sposób arkusz jest podzielony na dwa trójkąty o równej mierze, które są symetryczne.

Przykład symetrii osiowej

Oś, którą warto określić, może zawierać jakiś punkt symetrycznych figur, jak widać na poniższym rysunku.

W przykładzie oś symetrii jest osią rzędnych płaszczyzny kartezjańskiej lub osią pionową. Linia ta zawiera również jeden z wierzchołków (A) wielokątów symetrycznych, które mają wspólny punkt,

Należy zauważyć, że przykładem symetrii jest podział dokonany przez przekątną kwadratu.

Popularne Wiadomości

Dlaczego ceny żywności tak bardzo wzrosły?

Szczególnie uderzający jest sposób, w jaki wzrosły ceny żywności. Ceny nie były tak wysokie od 26 miesięcy. Wartość żywności i ewolucja jej cen to kwestia, która niepokoi nie tylko ekonomistów, ale całe społeczeństwo. Chodzi oCzytaj więcej…