Rozkład t-Studenta - co to jest, definicja i pojęcie

Rozkład t-Studenta lub rozkład t jest modelem teoretycznym używanym do przybliżenia momentu pierwszego rzędu populacji o rozkładzie normalnym, gdy wielkość próby jest mała, a odchylenie standardowe jest nieznane.

Innymi słowy, rozkład t jest rozkładem prawdopodobieństwa, który szacuje wartość średniej małej próbki pobranej z populacji, która ma rozkład normalny i dla której nie znamy odchylenia standardowego.

Zalecane artykuły: stopnie swobody, stopnie swobody (przykład) i rozkład normalny.

Wzór na rozkład t-Studenta

Mając ciągłą zmienną losową L, mówimy, że częstość jej obserwacji może być zadowalająco przybliżona do rozkładu t z g stopni swobody, tak że:

Reprezentacja rozkładu t-Studenta

Funkcja gęstości rozkładu t z 3 stopniami swobody (df).

Jak widać, reprezentacja rozkładu t jest bardzo podobna do rozkładu normalnego, z wyjątkiem tego, że rozkład normalny ma szersze ogony i jest bardziej podparty. Innymi słowy, powinniśmy dodać więcej stopni swobody do rozkładu t, aby rozkład „rosł” i wyglądał bardziej jak rozkład normalny.

Specjalność

I… Dlaczego rozkład t jest tak wyjątkowy?

Cóż, ponieważ w przeciwieństwie do rozkładu normalnego, który zależy od średniej i wariancji, rozkład t zależy tylko od stopni swobody, z angielskiego, stopnie swobody (df). Innymi słowy, kontrolując stopnie swobody, kontrolujemy rozkład.

Aplikacja t studenta

Rozkład t jest używany, gdy:

  • Chcemy oszacować średnią populacji o rozkładzie normalnym z małej próby.
  • Wielkość próbki jest mniejsza niż 30 sztuk, czyli n <30.

Z 30 obserwacji rozkład t bardzo przypomina rozkład normalny, więc użyjemy rozkładu normalnego.

  • Odchylenie standardowe populacji nie jest znane i należy je oszacować na podstawie obserwacji próby.

Przykład

Zakładamy, że mamy 28 obserwacji zmiennej losowej G o rozkładzie t-Studenta z 27 stopniami swobody (df).

Matematycznie,

Ponieważ pracujemy z rzeczywistymi danymi, zawsze będzie błąd aproksymacji między danymi a dystrybucją. Innymi słowy, średnia, mediana i tryb nie zawsze będą równe zero (0) lub dokładnie takie same.

Częstość każdej obserwacji zmiennej G przedstawiamy za pomocą histogramu.

Czy zmienna losowa G może aproksymować rozkład t?

Powody, dla których należy uznać, że zmienna G ma rozkład t:

  • Rozkład jest symetryczny. Oznacza to, że po prawej i lewej stronie wartości środkowej znajduje się taka sama liczba obserwacji. Ponadto średnia i mediana są zbliżone do tej samej wartości. Średnia wynosi w przybliżeniu zero, średnia = 0,016.
  • Obserwacje z największą częstotliwością lub prawdopodobieństwem znajdują się wokół wartości centralnej. Obserwacje z mniejszą częstotliwością lub prawdopodobieństwem są dalekie od wartości centralnej.

Popularne Wiadomości

Ameryka Łacińska zyskuje konkurencyjność na świecie, a Hiszpania nieznacznie spada

Niedawna publikacja World Competitiveness Index pokazuje, że Hiszpania traci pozycję w zakresie konkurencyjności, podczas gdy kraje Ameryki Łacińskiej robią powolne postępy, choć nadal pozostają w tyle. Na szczycie rankingu raportu Światowego Forum Ekonomicznego znajdują się takie klasyki, jak Szwajcaria, Stany Zjednoczone, Singapur, Holandia i Niemcy. Poniżej analizujemy, jakie czynniki wpłynęłyCzytaj więcej…

Wybory w Niemczech: Angela Merkel wygrywa, ale jest zmuszona do negocjacji

Kanclerz Niemiec Angela Merkel zwyciężyła w niemieckich wyborach, które odbyły się 24 września. Partia Merkel, Unia Chrześcijańsko-Demokratyczna, zdobyła najwięcej głosów, uzyskując 33% głosów. Na drugim miejscu znajdują się socjaldemokraci z 20,5% głosów i wejściem do parlamentu Więcej…

Zalety i wady elastyczności pracy

Dzielone godziny pracy a intensywne godziny pracy to jeden z kluczowych aspektów w firmach oferujących elastyczność pracy swoim pracownikom.…

Czy wkrótce pojawią się nowe fuzje w europejskim sektorze bankowym?

EBC zabiera głos, tym razem domagając się silnych, wypłacalnych i odważnych podmiotów bankowych, które wzmacniają europejską panoramę bankową i aby w ten sposób nie mogły na nie wpływać polityka niskich stóp procentowych i walka o klientów. Ciągłe zmagania banków z polisamiCzytaj więcej…