Rozkład t-Studenta - co to jest, definicja i pojęcie

Rozkład t-Studenta lub rozkład t jest modelem teoretycznym używanym do przybliżenia momentu pierwszego rzędu populacji o rozkładzie normalnym, gdy wielkość próby jest mała, a odchylenie standardowe jest nieznane.

Innymi słowy, rozkład t jest rozkładem prawdopodobieństwa, który szacuje wartość średniej małej próbki pobranej z populacji, która ma rozkład normalny i dla której nie znamy odchylenia standardowego.

Zalecane artykuły: stopnie swobody, stopnie swobody (przykład) i rozkład normalny.

Wzór na rozkład t-Studenta

Mając ciągłą zmienną losową L, mówimy, że częstość jej obserwacji może być zadowalająco przybliżona do rozkładu t z g stopni swobody, tak że:

Reprezentacja rozkładu t-Studenta

Funkcja gęstości rozkładu t z 3 stopniami swobody (df).

Jak widać, reprezentacja rozkładu t jest bardzo podobna do rozkładu normalnego, z wyjątkiem tego, że rozkład normalny ma szersze ogony i jest bardziej podparty. Innymi słowy, powinniśmy dodać więcej stopni swobody do rozkładu t, aby rozkład „rosł” i wyglądał bardziej jak rozkład normalny.

Specjalność

I… Dlaczego rozkład t jest tak wyjątkowy?

Cóż, ponieważ w przeciwieństwie do rozkładu normalnego, który zależy od średniej i wariancji, rozkład t zależy tylko od stopni swobody, z angielskiego, stopnie swobody (df). Innymi słowy, kontrolując stopnie swobody, kontrolujemy rozkład.

Aplikacja t studenta

Rozkład t jest używany, gdy:

  • Chcemy oszacować średnią populacji o rozkładzie normalnym z małej próby.
  • Wielkość próbki jest mniejsza niż 30 sztuk, czyli n <30.

Z 30 obserwacji rozkład t bardzo przypomina rozkład normalny, więc użyjemy rozkładu normalnego.

  • Odchylenie standardowe populacji nie jest znane i należy je oszacować na podstawie obserwacji próby.

Przykład

Zakładamy, że mamy 28 obserwacji zmiennej losowej G o rozkładzie t-Studenta z 27 stopniami swobody (df).

Matematycznie,

Ponieważ pracujemy z rzeczywistymi danymi, zawsze będzie błąd aproksymacji między danymi a dystrybucją. Innymi słowy, średnia, mediana i tryb nie zawsze będą równe zero (0) lub dokładnie takie same.

Częstość każdej obserwacji zmiennej G przedstawiamy za pomocą histogramu.

Czy zmienna losowa G może aproksymować rozkład t?

Powody, dla których należy uznać, że zmienna G ma rozkład t:

  • Rozkład jest symetryczny. Oznacza to, że po prawej i lewej stronie wartości środkowej znajduje się taka sama liczba obserwacji. Ponadto średnia i mediana są zbliżone do tej samej wartości. Średnia wynosi w przybliżeniu zero, średnia = 0,016.
  • Obserwacje z największą częstotliwością lub prawdopodobieństwem znajdują się wokół wartości centralnej. Obserwacje z mniejszą częstotliwością lub prawdopodobieństwem są dalekie od wartości centralnej.

Popularne Wiadomości

Ultimatum Fridmana dla DIA

Wydaje się, że skomplikowana sytuacja, przez którą przechodzi DIA, pozostawia tylko jedną opcję: zaakceptować ofertę przejęcia Michaiła Fridmana. Stanowisko firmy jest tak rozpaczliwe, że druga alternatywa byłaby tragiczna, ponieważ oznaczałaby bankructwo. Pospieszne podejście DIA nie jest niczym nowym od zeszłego rokuCzytaj więcej…

Wojna handlowa może mieć datę wygaśnięcia

Stany Zjednoczone i Chiny mogą być bardzo blisko ostatecznego rozejmu handlowego. Prezydent Trump ujawnił, że może się to odbyć podczas szczytu w maju przyszłego roku. Negocjacje między Stanami Zjednoczonymi a Chinami są już na horyzoncie. Donald Trump na spotkaniu w zeszłym tygodniu z wicepremieremCzytaj więcej…

Warren Buffett: Jestem bogaty dzięki Ameryce

Słynne listy Warrena Buffetta do inwestorów są niewyczerpanym źródłem wiedzy. Pod koniec ostatniego listu wyrocznia z Omaha pozostawiła jedno z jego najbardziej szokujących stwierdzeń. Urodzony w 1930 roku Warren Buffett został przez wielu wyniesiony na tron ​​największego inwestora wszechczasów. W swojej długiej trajektoriiCzytaj więcej…